Hassan Salem

Animal-Microbe Interactions

Max Planck Insitute for Biology
Faculty in: TIPP, IMPRS


  • PhD, MPI for Chemical Ecology, Jena
  • Postdoctoral fellow, Emory University, Atlanta
  • Postdoctoral fellow, Smithsonian Institution, Washington D.C.
  • Max Planck Research Group Leader at the MPI for Biology


Research Interest

Numerous adaptations in animals are a direct consequence of symbiotic partnerships with microorganisms. We are interested in the molecular currencies driving the cooperation of species, and the genomic and metabolic consequences of coevolution between a host and its symbiont. Our emphasis is on the dynamic relationships that have evolved within leaf-feeding animals, focusing mainly on insects. We use leaf beetles (Coleoptera: Chrysomelidae) as a study system given the streamlined mutualisms they form with specialized symbionts possessing drastically reduced genomes and correspondingly limited metabolisms. These symbioses are defined by the pectin-degrading abilities of the microbe, allowing the insect host to consume, process and subsist on carbohydrate-rich leaves as a sole nutritional resource.
The widespread and convergent evolution of pectinolytic mutualisms in leaf beetles provides a highly tractable model to characterize the molecular and biochemical currencies contributing to the evolution of folivory across the Metazoa, with applications that extend to ruminants and folivorous animal groups. Our work is integrative in nature, combining genomics and fieldwork with chemical ecology and developmental biology to understand the origin of microbe-beetle interactions and the adaptive impact of pectin degradation for folivores.



Available PhD Projects

  • Currently not recruiting PhD students


Selected Reading


Go to Editor View